
Managing Kernel Extensions
Session 108

Managing Kernel Extensions

Craig Keithley
USB and FireWire Technology Evangelist

Dean Reece
I/O Kit Team Manager

Managing Kernel Extensions

What You Will Learn
•What KEXTs are
•When (not) to use them
•How KEXTs are managed, developed
and distributed

•Pitfalls to avoid

OpenGLOpenGLQuartzQuartz QuickTimeQuickTime

DarwinDarwin

AquaAqua

ClassicClassic JavaJava CarbonCarbon CocoaCocoa

You are
 here

Mac OS X Architecture

OpenGLOpenGLQuartzQuartz QuickTimeQuickTime

DarwinDarwin

AquaAqua

ClassicClassic JavaJava CarbonCarbon CocoaCocoa
Application

Environments
Application

Environments

DarwinDarwin

BSDKernelBSDKernel

Mach KernelMach Kernel

IO KitIO Kit
NetworkingNetworkingFile SystemFile System

DriversDrivers

OS Framework: System, Security, vecLib, …OS Framework: System, Security, vecLib, …

Darwin/Core OS

Mac OS X Kernel Extensions
•Kernel Extensions (KEXTs) add functionality
to the Mac OS X Kernel

•There are 3 types of KEXTs
• I/O Kit Drivers and Families
• Network Kernel Extensions (NKEs)
• Filesystem Extensions

Appropriate Uses of KEXTs
•Do not use a KEXT unless absolutely necessary:

• Development in the kernel is harder
• In-kernel resources are more expensive
• Crashes are fatal

•A KEXT is only necessary if
• You must respond to an interrupt
• Your primary client is in the kernel

Anatomy of a KEXT
•A KEXT is a bundle with “.kext” extension

• An indivisible item to users
• A folder of resources to developers

•May contain
• A descriptive property list (required)
• A binary to load into the kernel
• Localizable strings files, icons
• Utility binaries, firmware images
• Other bundles (including KEXTs)

KEXT Example: Structure
� IOUSBFamily.kext

� Contents
� Info.plist

� MacOS
� IOUSBFamily

� PlugIns
� AppleUSBComposite.kext

� IOUSBLib.bundle

� IOUSBUserClient.kext

 …

KEXT Example: Structure
� IOUSBFamily.kext

� Contents
� Info.plist

� MacOS
� IOUSBFamily

� PlugIns
� AppleUSBComposite.kext

� IOUSBUserClient.kext

� IOUSBLib.bundle

 …

KEXT Example: Info.plist
•Info.plist is an XML property list that identifies
the KEXT and its contents

•Critical properties:
• CFBundleIdentifier = “com.you.driver”

• CFBundleVersion = “1.2.3b4”

• CFBundleShortVersionString = “1.2.3”

• OSBundleLibraries = “com.apple.io…”

• IOKitPersonalities = { … }

� IOUSBFamily.kext

� Contents
� Info.plist

� MacOS
� IOUSBFamily

� PlugIns
� AppleUSBComposite.kext

� IOUSBUserClient.kext

� IOUSBLib.bundle

 …

KEXT Example: Structure

KEXT Example: Binary
•Optional
•Mach-O format
•There are two standard entry points

• module_start()

• module_stop()

•I/O Kit KEXTs do not use module_start/stop

� IOUSBFamily.kext

� Contents
� Info.plist

� MacOS
� IOUSBFamily

� PlugIns
� AppleUSBComposite.kext

� IOUSBUserClient.kext

� IOUSBLib.bundle

 …

KEXT Example: Structure

KEXT Example: PlugIns
•Optional
•Can contain

• Other KEXTs (sub-KEXTs)
• Device Interface libs (CFBundles)
• Any other kind of bundle

•Allows driver suite to be delivered as single KEXT
•Only one level of nesting supported

KEXTs as Libraries
•KEXTs may link against other (library) KEXTs
•Dependencies are expressed in
OSBundleLibraries dictionary

•Each entry contains a CFBundleIdentifier
and CFBundleVersion

•Library KEXTs must provide
OSBundleCompatibleVersion property
indicating the oldest version with which
it is binary compatible

KEXTs as Libraries
•Driver com.you.driver depends on
com.you.library version 2.0

•Library com.you.library is installed
• CFBundleVersion is 3.0
• OSBundleCompatibleVersion is 1.0

•Since the driver depends on a version within
the library’s compatible version range, the two
are compatible

KEXT Suites
•Sub-KEXTs, KEXT libraries, and KEXT
matching can be used to divide one KEXT
into a “KEXT Suite”

•This should be done if significant pieces
of the KEXT will not be used all the time

• Init-time code (such as firmware)
• Product variants allow for
mix-and-match drivers

• Device may be attached by a variety of buses

KEXT Management
at Boot Time

•Only drivers with the OSBundleRequired
property are considered at boot time

•BootX loads the Extensions.mkext cache if
possible, or scans the Extensions folder if not

• Uses modification date to decide
•Kernel-resident code links and executes each
KEXT as needed

KEXT Management at Run Time
•KEXT daemon (kextd) is launched shortly
after multiuser startup by the /etc/rc script

•kextd contacts the kernel and takes
over KEXT management duties

•Kernel-resident linking code is jettisoned
to free up memory

•kextd processes KEXT load requests from
the kernel

What Causes KEXTs to Load?
•KEXTs are loaded only on demand

• I/O Kit Drivers and Families are requested via
family matching as hardware is discovered

• Filesystem KEXTs are loaded during volume
mounting by exec’ing kextload

• NKEs are loaded by Startup Items, or by
particular actions like ppp connection

•The exact rules for mapping an event to a
particular KEXT vary by subsystem

What Causes KEXTs to Unload?
•KEXTs are unloaded only on demand

• I/O Kit Drivers and Families unload about a
minute after they are no longer referenced

• Filesystem KEXTs can unload during
volume unmount

• NKEs typically do not unload, or are unloaded
due to particular actions, such as ppp
connection tear-down

•The kextunload utility will attempt to unload a
KEXT, though it may fail the unload request

KEXT Binary
Compatibility Issues
•KEXT management is based on static linking—we are
limited to the information provided by the compiler
in the KEXT’s symbol table

•List all CFBundleIdentifiers on which you depend,
using the oldest version number that supports the APIs
you need (see “Kernel Extension Dependencies”)

•Build using the headers from the oldest version of
the OS on which you want to run

•Use gcc 2.95 if you want to run on anything prior
to Jaguar

KEXT Binary
Compatibility Issues
•Avoid direct use of Mach and BSD APIs if possible;
they are more likely to change in binary-
incompatible ways

•We will be working to create supportable APIs in
the future for network and filesystem KEXTs

•Developers will need to migrate to these new APIs,
since we will have to deprecate existing ones to
move forward

•Stay in contact with DTS or watch the Darwin groups
to find out how these transitions will be staged

Manipulating KEXTs
From Applications
•KEXTs should be installed by unpacking to /tmp,
then moving to /System/Library/Extensions

•Remove KEXTs by moving them to /tmp
•“touch /System/Library/Extensions” after changing
any driver to ensure all KEXT caches are updated

•KEXTs need not be installed in
/System/Library/Extensions to be loaded

•KEXTs may be loaded or unloaded by running
the KEXT utilities from a setuid utility; use fork()
and exec()

KEXT Preferences
•Ideally, avoid KEXT preferences completely

• Adds complexity to the UI
• More state to manage (and corrupt)

•Preferences may not be stored in the
KEXT bundle

•Store preferences in /Library/Preferences
•Use KEXT’s CFBundleIdentifier as the file name

KEXT Preferences
•Provide a prefs utility as a

• Resource of your KEXT
• Stand-alone app
• Preference pane in */Library/PreferencePanes

•The utility may present UI to the user
•Utility may use CFPreferences to read and write
the preference file (see “Core Foundation
Preference Services”)

•Utility may communicate with your driver
instances using any available access mechanism

Loading and Unloading

Development Tips

•Add IOKitDebug=65535 (integer) to your
driver’s personality to get additional logging
during matching—look in /var/log/system.log

•Use /usr/sbin/ioreg -c myClass to see where
your driver fits into the IORegistry

•Use /usr/sbin/ioclasscount myClass … to see
how many instances of your driver remain—
can help diagnosing kextunload failures

Panics and Hangs

Development Tips

•Execute /usr/sbin/nvram boot-args="debug=4"
and reboot your test machine to enable remote
attach—this allows Cmd+Pwr to interrupt
many hangs

•Do not put your kexts in
/System/Library/Extensions; load
them manually using kextload

Panics and Hangs

Development Tips

•Make use of remote debugging using symbols
from manual kextload—see “Hello Debugger”
tutorial

•IOLog() and printf() are not synchronous and
have a limited bandwidth. If you want to see all
messages leading up to a panic or hang, log in as
“>console” before triggering failure

Preparing a KEXT
for Deployment
•Make sure code is ready for release:

• Remove assert(), Debugger() calls…
• Get rid of diagnostic messages
• Remove IOKitDebug property or set to 0
• Do not forget to set appropriate version numbers

•Build with “Deployment” build-style in PB, or
at least run strip -S all KEXT binaries

•Package the KEXT using a tool such as
PackageMaker; See “Packaging Your KEXT for
Distribution and Installation”

Preparing a KEXT
for Deployment
•Always test your installation process!
•Verify that each KEXT is correctly installed

• Ownership must be (root:wheel)
• Directory permissions should be 755
• File permissions should be 644

Managing Kernel Extensions

Nik Gervae
KEXT Management Engineer

New KEXT Tools
and Techniques
•All-new codebase

• Much more extensible and maintainable
•Built on a comprehensive library

• In Darwin under IOKitUser and
kext_tools projects

• Not for third party use yet, but someday…

The Tools
•kextload (obsoletes kmodload, kmodsyms)

• Many new options for debugging
• Installed with base system
• Usage compatible with prior versions

•kextunload (obsoletes kmodunload)
• Installed with base system
• Usage compatible with prior versions

The Tools
•kextstat (obsoletes kmodstat)

• Do not have to be root to run
• Installed with developer tools;
not in base system

•kextcache (obsoletes mkextcache)
• Installed with the base system

KEXT Manager Daemon
•kextd adds options

• Installed with base system, but considered
an implementation detail

• Do not rely on presence of kextd executable
or process

Using kextload
•Verbose logging: use -v for 6 levels of verbose
logging (WWDC seed contains a bug at level 6,
so avoid using it when loading a kext)

•Generating symbols: use -s
• Automatically generates symbols for all
libraries too; no more kmodsyms -d ... -d ...

•Generating symbols without loading:
use -n, -a, -A, -k

Using kextload
•Debugging driver start() functions: use -l, -m
•Debugging other KEXT start routines: use -i, -I
•Specifying dependencies explicitly: use -d, -r, -e
•Skipping authentication during development:
use -z (DevTools version only)

•kextload performs strict authentication if you
use any new option, as well as with -i

Verifying Your KEXT
•Use the -t option to perform a full set of checks
on your KEXT

•Diagnoses problems with the info dictionary,
with file ownership and permissions, and with
library dependencies

•Always run kextload -nt on your KEXT as a test
before shipping software

Creating Multi-KEXT Caches
•kextcache replaces mkextcache
•Allows precise inclusion of KEXTs with -l, -L, -n,
-N options

•With -l and -n, KEXTs named on the command
line are always included regardless of
OSBundleRequired setting

•With -L and -N, all KEXTs are screened by
OSBundleRequired

•One small bug in WWDC seed: PlugIns missed
on explicitly-named KEXTs

Examining Loaded KEXTs
•kextstat replaces kmodstat
•Does not require running as root
•Skip in-kernel components with -k
•Skip header with -l; useful for shell
script processing

•Get info about a specific KEXT with -b

CFURLRef

 KextManagerCreateURLForBundleIdentifier(

 CFAllocatorRef allocator,

 CFStringRef bundleIdentifier);

Finding a KEXT
•New function in IOKitUser finds KEXTs
installed in /System/Library/Extensions

KEXT Tools Suite History
•Mac OS X 10.0

• Boot-time driver loading support
•Mac OS X 10.1

• Extension.mkext cache introduced
to improve boot performance

•Jaguar
• Update toolset
• Build base for new features
• Improved performance and footprint

Future Directions
•Parity between kernel and user-space code
•Clean up kernel “kmod” API; avoid using
•Make KEXT management library available
for apps

•KEXT bundle signing
•Input from developers

Roadmap
Room A1

Mon., 2:00pm
Room A1

Mon., 2:00pm

100 The Darwin Road Map

Civic
Tue., 2:00pm

Civic
Tue., 2:00pm

103 Open Source, Apple, and You

Civic
Wed., 9:00am

Civic
Wed., 9:00am

107 The Darwin Kernel

Room J1
Wed., 3:30pm

Room J1
Wed., 3:30pm

FF002 Darwin

Who to Contact
Craig Keithley
USB and FireWire Technology Evangelist
keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

For More Information
•Apple Developer Website
http://developer.apple.com

•Darwin Project Website and Mailgroups
http://developer.apple.com/darwin/

KEXT Management

http://developer.apple.com/techpubs/macosx/Darwin/index.html

Documentation

•Man pages
• kextload, kextunload, kextcache,
kextstat,
kextd

•Release note
•Revised I/O Kit documentation

Documentation > Darwin > I/O Kit Documentation

Q&A

Craig Keithley
USB and FireWire Technology Evangelist

keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

